Bigraph-factorization of symmetric complete bipartite multi-digraphs

نویسنده

  • Kazuhiko Ushio
چکیده

We show that a necessary and sufficient condition for the existence of a Kp,q factorization of the symmetric complete bipartite multi-digraph )"K:n n is (i) m = n == 0 (mod p) for p = q and (ii) m = n == a (mod d(p' + q')p'q'/e) for p =f. q, where d = (p,q), p' = p/d, q' = q/d, e = ()..,p'q').

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evenly partite bigraph-factorization of symmetric complete tripartite digraphs

We show that a necessary and sufficient condition for the existence of a Kp ,2q factorization of the symmetric complete tripartite digraph K~1,n2,n3 is (i) ni = n2 = n3 == 0 (mod p) for p = q, (ii) ni = n2 = n3 == 0 (mod dp'q'(p' + 2q')) for p =Iq and p' odd, (iii) ni = n2 = n3 == 0 (mod dp'q'(p' + 2q')/2) for p =Iq and p' even, where d = (p, q), p' = p/d, q' = q/d.

متن کامل

P3-factorization of complete bipartite symmetric digraphs

In path factorization, H. Wang [1] gives the necessary and sufficient conditions for the existence of P_k-factorization of a complete bipartite graph for k, an even integer. Further, Beiling Du [2] extended the work of H. Wang, and studied the P_2k-factorization of complete bipartite multigraph. For odd value of k the work on factorization was done by a number of researchers. P_3-factorization ...

متن کامل

Bipartite Symmetric Digraph

P2p -factorization of a complete bipartite graph for p, an integer was studied by Wang [1]. Further, Beiling [2] extended the work of Wang[1], and studied the P2k -factorization of complete bipartite multigraphs. For even value of k in Pk -factorization the spectrum problem is completely solved [1, 2, 3]. However for odd value of k i.e. P3 , P5 and P7 , the path factorization have been studied ...

متن کامل

On determinants and permanents of minimally 1-factorable cubic bipartite graphs

A minimally 1-factorable cubic bigraph is a graph in which every 1-factor lies in precisely one 1-factorization. The author investigates determinants and permanents of such graphs and, in particular, proves that the determinant of any minimally 1-factorable cubic bigraph of girth 4 is 0.

متن کامل

Cobweb Posets and KoDAG Digraphs are Representing Natural Join of Relations, their di-Bigraphs

sponding adjacency matrices is defined and then applied to investigate the so called cobweb posets and their Hasse digraphs called KoDAGs. KoDAGs are special orderable Directed Acyclic Graphs which are cover relation digraphs of cobweb posets introduced by the author few years ago. KoDAGs appear to be distinguished family of Ferrers digraphs which are natural join of a corresponding ordering ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Australasian J. Combinatorics

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1999